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Evaluation of angular integrals by harmonic projection* 

J. Avery I and F. Antonsen z 
i H. C. Orsted Institute, University of Copenhagen, Kemisk Laboratorium IV, 
Universitetsparken 5, DK-2100 Copenhagen, Denmark 
2 Niels Bohr Institute, University of Copenhagen, Denmark 

Received September 6, 1991/Aecepted December 6, 1991 

Summary. Angular momentum and angular integrations are discussed from the 
standpoint of  the theory of harmonic polynomials. General formulae are devel- 
oped which provide alternatives to the usual group theoretical approach. These 
formulae are illustrated by applications to the calculation of molecular electro- 
static potentials, Fourier tranforms of charge densities, and multipole expan- 
sions. 
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1. Introduction 

In quantum chemistry and atomic physics, angular momentum has usually been 
treated from a group theoretical standpoint, i.e. by means of Wigner's Clebsch-  
Gordon  coefficients, Racah coefficients, 6J-symbols and so on [10-14]. In this 
paper we would like to present an alternative method for treating angular 
momentum and for evaluating angular integrals. This alternative method is 
based on the theory of harmonic polynomials. By definition, an harmonic 
polynomial is a homogeneoiis polynomial hi which also satisfies the Laplace 
equation, V2hl = 0. Harmonic  polynomials are closely related to spherical har- 
monics; in fact spherical harmonics are nothing but harmonic polynomials, 
orthonormalized in an appropriate way and divided by apbropriate powers of  r. 
The theory of harmonic polynomials can easily be generalized to d-dimensional 
spaces; and d-dimensional harmonic polynomials are closely related to hyper- 
spherical harmonics [15-25]. In this paper, we shall begin by discussing the 
general properties of  harmonic polynomials in a d-dimensional Euclidean space. 

* It is a pleasure for us to dedicate this paper to Madame Alberte Pullman, one of the great pioneers 
of quantum biochemistry. Her work has illuminated many important aspects of chemical reactivity. 
Among these is the role of excess charge density, and the electrostatic potential which it generates, 
in determining biochemical reactivity and specificity [ 1-9]. We are happy to be able to discuss some 
aspects of this problem in the present paper, using the methods of harmonic projection. 
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We shall then specialize to 3-dimensional space, and we will show how the theory 
of  harmonic projection can be used to convert angular integrations into prob- 
lems of  differentiation. Finally, we shall give some illustrative examples to show 
how our angular integration formulae can be used for practical calculations in 
quantum theory. 

2. Harmonic polynomials 

Let x , ,  x 2 . . . .  , xa be the Cartesian coordinate of a d-dimensional space, and let: 
d 

L - I - I x ?  (1) 
j = ,  

where the nj's are positive integers or zero and: 

nl + n2 +"  • • + na = n. (2) 

Then 

x s - -  =ns . .  (3) 
j= ~ Oxj 

From Eq. (3) it follows that if A is the generalized Laplacian operator: 

A - i = ,  ~x~ (4) 

and if r is the hypperadius [22]: 

then 

d 
2 r 2 -  y~ xj (5) 

j = l  

A(r~f~) = fl(fl + d + 2a - 2)r¢-  2f~ + r e A f t .  (6)  

Let h~ be a homogeneous polynomial of order a satisfying: 

Ah~ = 0. (7) 

Such a homogeneous polynomial is said to be harmonic.  We would like to resolve 
fn into a series of harmonic polynomials of the form: 

fn = h ,  + r2h ,_2  + r 4 h , _ 4  +"  • ". (8) 

Since h~ is a linear combination of terms of  the form shown in Eq. (1), it follows 
from Eq. (6) that [22]: 

A(r~h~) = fl(fl + d + 2~ - 2)r ~ 2h~. (9) 

Applying A repeatedly to both sides of Eq. (8) we obtain: 

A f ,  = 2(d + 2n - 4)h,_ 2 -~- 4(d + 2n - 6)rZh, _ 4 +"  • • 
(10) 

A 2fn = 8(d + 2n - 6)(d + 2n - 8)hn a + ' "  " 

and in general: 

i1~__2~ 1 (2k)!! ( d +  2n ~_k2k - 2)!! r2k_2~h, (11) 
avf~ = ( 2 / ~ 2 v ) ! !  (d+2nn 7 -~vv C~2)!! 2k. 
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Fo r  example,  when n is even and  v = n/2, we obtain: 

o r  

A n/zf. n!!(d + n - 2)!! = ho (12) 
( d -  2)!! 

( d -  2)!! a./2f." (13) 
ho n!!(d + n - 2)!! 

Equat ions  (10) or  (11) consti tute a set o f  s imultaneous equat ions which can be 
solved for  ha. Fo r  n = 2, we obtain: 

f2 = h2 + r2ho 

h o = l A f 2  (14) 

?.2 

h2 =f2 - ~ A f 2  
f 

while for  n = 3 we have: 

f3 = h3 + r2hl J 

1 
hi - -  2(d + 2) Af3 (15) 

r 2 
h3 = f3  - - A f 3 .  

2(d + 2) 

As exemplified by Eqs. (14) and (15), the ha rmonic  polynomials  in the decompo-  
sition Offn (Eq. (8)) are given by: 

r 2 ?.4 
h. = f .  Af. + AZf. . . . .  (16) 

2(d + 2n - 4) 8(d + 2n - 4)(d + 2n - 6) 

1 [ ] 
h . _ 2 - 2 ( d + 2 n _ 4  ) Af.  2 ( d + 2 n _ 8 ) A 2 f . +  . . .  (17) 

and in general: 

(d + 2n - 4v - 2) !! 
h. 2v ( 2 v ) ! ! ( d + 2 n - 2 v - 2 ) ! !  

t . /~  vl ( _ 1)~(d + 2n - 4v - 2k - 4)[[ r2 k 
x k~=o (~ . [ (d+-2n- - -4~  ~-4~.! Ak+vf"" (18) 

3. 3-Dimensional space 

When d = 3, the generalized Laplac ian  opera to r  becomes the ord inary  Lapla-  
clan: 

02 02 02 

a ~ V 2 -  ~x2 + ~ 5 +  az 2 (19) 
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and Eqs. (14) and (15) reduce to: 

f2 = h2 -+- r2ho 

1 
ho = ~ V2A 

r 2 

h2 = f2 - g V2f2 

and 
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(20) 

f3 = h3 + r2hi 

1 2 
h~ = ~ V f 3  (21) 

_ /*2  ~72f  
h3 = f3  1 0 " a 3  

while in the general decomposi t ion o f f .  into harmonic  polynomials:  

f .  = hn + r2hn_ 2 + r 2 h n _ 4  - ] - "  " " (22) 

we have: 

r 2 r 4 
hn =fn V2fn + V4f~ . . . .  (23) 

2(2n -- 1) 8(2n -- 1)(2n -- 3) , [  r2 ] 
h , _  2 - 2(2n - 1) v2f~ 2(2n - 5) V4f" + " "  (24) 

and so on. Thus, for example, if we wished to decompose f3 = xZY into a series 
o f  harmonic  polynomials,  we would first note that: 

Vax2y = 2y. (25) 

Then f rom Eq. (21), we obtain: 

x2y = h3 + r2hl 

h 1 = Y (26) 
5 

r 2 
h 3 = x 2y _ 5- y 

notice that, apar t  f rom the normalizat ion constant ,  hi/r is a spherical harmonic  
with l = 1, while h3/r 3 is a spherical harmonic  with l = 3. 

4. Angular momentum eigenfunction 

The angular  m o m e n t u m  operator:  

, > j \  ~xj - XJ~x, (27) 
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can be written in the form: 

3 02  3 

L 2 = - r  ~ V 2 + y~ x , x j - -  + 2 Y, x , - -  
i,j = 1 O X  i ~ X j  i =  1 

In a previous section we saw that if: 

3 

f , , ~  I-I x'], 
j = l  

H~--H1 -~-- t'/2 ..-{- ~3 

then: 

O 
Oxi" (28) 

Similarly we can show that: 

(29) 

~. xi a~if~ = nfn. (30) 
i = 1  

3 02  

x i x y ~ A  = n(n -- 1)f  n. (31) 
i , j  = 1 

(32) 

Combining Eqs. (30), (31) and (28), we obtain 

L 2fn = -- r 2 V2f~ + n(n + 1)f  n. 

Now let hz be an harmonic polynomial of order l. Then from Eq. (32) and from 
the fact that V2ht = 0, it follows that: 

LZhl = l(l + 1)hr. (33) 

In other words, harmonic polynomials are eigenfunctions of angular momen- 
tum. (An analogous argument can be used to show that harmonic polynomials 
in a d dimensional space are eigenfunctions of generalized angular momentum). 
It follows from Eq. (33) that harmonic polynomials are closely related to 
spherical harmonics. As we remarked, spherical harmonics are just harmonic 
polynomials, orthonormalized in an appropriate way, and divided by an appro- 
priate power of the radius: 

Ytm(O) = r -'htm (34) 

where the index m has been added to distinguish between the different linearly 
independent harmonic polynomials belonging to the eigenvalue l(l + 1). We can 
choose the set of harmonic polynomials in such a way that the orthonormality 
conditions: 

f df2 Y*,,,,(f2) Ytm(f2) = (~ll,(~mm, (35) 

are obeyed. Thus, the decomposition of fn into a series of harmonic polyno- 
mials is, in fact, a decomposition into angular momentum eigenfunctions. In 
other words, if Ot is a projection operator corresponding to the / 'th eigenvalue 
of L2: 

O,[f~] = r " -  lh,. (36) 
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5. Angular integrations 

Because of the hermiticity of L 2, it follows that two harmonic polynomials 
belonging to different eigenvalues of L 2 are orthogonal: 

f dOhlhr = 0 i f / C  l'. 

Since ho is just a constant, Eq. (36) implies that: 

f dOhl = O i f / C O .  

Therefore, if n is even: 

fdOfn=fdf2(hn+r2hn_2+'"+rnho)=4nrnho . 

From Eq. (13), and from the definition offn (Eq. (1)), we have: 

1 1 3 
- - -  __I-[1 (nj - 1)!!. h0 (n + 1)! v n f n  (n  + 1)! ] j=  

Thus we obtain the powerful angular integration formula: 

f I(n) = d O x n l y n 2 z  n3 - (n + l)!!j (nil)!!. 

(37) 

(38) 

(39) 

(40) 

(41) 

6. Harmonic projection 

The spherical harmonics obey the sum rule: 

Y~ Y*,.(o')Yl,.(o) - 
2 l +  1 

4n 

where 

- - -  P l ( u "  u ' )  (42) 

1 
u = - ( x , y , z )  

r 

1 
u" =- - -  ( x ' ,  y ', z ") 

r ~ 

(43) 

and where PI is a Legendre polynomial. From Eq. (42) it follows that if F(f2) is 
some angular function, then: 

(O) ~ dQ' Y* (g2')F(O') 0l [F(O)] E Y,m 
m d 

2l + 1 f dO,Pl(u, u')F(O'). (44) 
4n 3 

In a previous section we resolved an angular function into eigenfuncfions of  L 2 
by differentiating. Here we perform the same operation by integrating. The 
equivalence of the two projections makes it possible to perform angular integra- 
tions by differentiation! 
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7. Applications of harmonic projection 

In order to illustrate the way in which our angular integration formulae can be 
applied, it may be useful to consider some simple examples. Suppose, for 
example, that we wish to calculate the potential produced by a charge distribu- 
tion of the form: 

where 

Q. (x) = Q(r))~. (Q) (45) 

)~.(~) = (46) 
j = l  

A more general charge distribution can be represented as a superposition of 
terms this form, centered on each of the atoms of the system. Therefore, if we are 
able to find the potential produced by such a term, we will also be able to find 
a potential produced by a more general charge distribution. The potential 
produced by ~.(x) will be given by: 

f ¢ ( x )  = d3x" Ix - x ' ]  Qn(x'). (47) 

Expanding 1 ~ I x -  x ']  in terms of Legendre polynomials 
oo r~ 

1 -l~=o r~>+ 1 P,(u" u') (48) 
l x - x ' l  = 

we obtain: 

= l=o dr r r~>+ 1 d~2'Pl(u " u ' ) e . ( x '  ) 

fo z t2 r <  ¢ 
= ,=  0 l [ ; 6 , ( f 2 ) ]  dr r r~>+ 1 o(r ). (49) 

From Eqs. (1) and (46) it follows that: 

Ol [Z, ((2)1 = r - nO t [£1 = r - lh l. (50) 

Thus, the angular integrations needed for calculating the potential produced by 
the charge distribution can be performed by decomposing fn into harmonic 
polynomials by the methods discussed above. Since the highest /-value in this 
decomposition is l = n, it follows that higher terms in this series for ¢(x) must 
vanish. If  n is even, only even values of l will contribute to the series, while if n 
is odd, only odd terms will occur. For example, i fn  = 2 and f2 = x i x  s where i # j ,  
then: 

- x ixs  (51) o2[z.(o)]- ,.~ 

while all other harmonic projections of Z,(fl) will vanish. Thus, in this example: 

4re 
dr,r,2 r ~  ~(r').  (52) XiXj 

¢(x) = ~ -  ?.2 r~ 

A very similar type of angular integration must be performed if we wish to 
calculate the Fourier transform of a charge distribution; and again the integra- 
tion can be carried out by means of harmonic projections. The Fourier transform 
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of the charge distribution On(x) is given by: 

 i(k) - 1 f (2~Z)3/2 d 3 x e ' k x o , ( x  ). (53) 

We now expand e ik'x in terms of Legendre polynomials and spherical Bessel 
functions: 

e i kx  = ~ iZ(2l + 1)jz(kr)Pt(u • u'). (54) 
l=O 

Substituting this expansion into the Fourier transform, we have: 

1 ~, / ' (2 l+1) fo  ~ drr2jz(kr)o(r)fdOP,(uk'U)Zn(O) (55) 0t~(k) - (2z0 3/2 t=o 

where uk is a unit vector in the direction of k, and where we have assumed that 
the charge density has the form shown in Eq. (45). Making use of Eq. (44) we 
can rewrite Eq. (55) in the form: 

f: Q~(k) = itOl[zn(Ok)] drjt(kr)o(r). (56) 
l 

As before: 

O, [Zn (Ok)] = k - nO, [fn (k)] = k -th, (k) (57) 

can be evaluated by means of harmonic projection. For example, if Zn(O)= 
x2 /r2: 

O2[xn(Ok)] - k ~  1 
k 2 3 
1 (58) 

Oo[Zn(Ok)] 3 

all other projections being zero. The Fourier transform of pn(X) thus becomes: 

1 f Qtn(k) __ (27¢) 3/2 d3 x eZ.k.~o(r ) x___Lir 2 

1N/~ fo ~ _ ( k ]  = ~ drjo(kr)o(r ) \ k2 -- ~ drj2(kr)o(r ). (59) 

As a third application of harmonic projection we can consider the problem of 
decomposing the product of two spherical harmonics into a sum of angular 
momentum eigenfunctions. If we let: 

rtYlm(O) -- hi 
rrY,,m,(O) =- h,, (60) 

then 

Or, [ Y~,, (O) Yr,.' (Q)] = r - t -  , , O r , ,  [ h , h , , ] .  

To evaluate Or,[hzhr] we first notice that: 

VZ(hthr) = ht VZhl , -[- hr VZhl -]- 2 
ahl ~h 1, 

i= 1 ~xi Oxi" 

(61) 

(62) 
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Since V2hl = V2hr = 0, only the cross terms survive; and we can write: 

V2(hlhr) = 2 ~ Oh10hr (63) 
i= 1 OXi OXi" 

Similarly: 

÷ 02hl a2hr (64) V4(hlhr) 4 
"-" ~xi axj ~xi Oxj i,j= 1 

and so on. Notice that the highest power of the Laplacian operator which can be 
applied to the product hthr without a vanishing result is the smaller of the two 
quantum numbers l or l'. Thus, for example, if l' = 1 we know that: 

V4(h,hl) - - - -  V6(hlhl) . . . . .  0. (65) 

Then, from Eqs. (23), (24) and (63) we have: 

r 2 + 8hl ~hl 
O1+ l[hzh1] = hzhl - 21 +-----i- i=l'("a ~X i ~X i 

r 2 ~ Oht 8hl 
01_ l[hthl] - 2l + 1 i=t~ axi ~xi (66) 

all other projections being zero. 

8. Mnltipole expansions 

As an example of  the way in which our angular integration Eq. (41) can be 
applied, we can consider the interaction between two charge distributions, 
located respectively on atoms at positions Ra and Rb. This interaction energy will 
be given by: 

d=fd3xfd3x'oo(x--e~)lxl~_x,]Ob(X'--Rb). (67) 

If  we introduce a Taylor series expansion of  1~Ix - x ' l  about the two centers Ra 
and Rb, we obtain: 

J = d3xoa(x - .= 1 + ( x y -  R~j) ~ + . . .  

j = l  ~ b j  - ~ ' ' "  Ieo-e~[" 
Suppose that: 

Ca(X) = e(r)z,(~?). (69) 

(As we remarked above, a more general charge distribution can be represented 
as a superposition of contributions of this form.) Shifting the origin of our 
integration we can write: 

3 R O 

= drr2¢(r) d~2)~,(f2) 1 + xj +" ' • . (70) 
j=l  ~ a j  
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The integrals which must be evaluated in the multipole expansion thus have the 
fo rm:  

;o f ;o f drr2Q(r) df2z. (f2) x~)= drrn'+20(r) df2Zn(O)Zn,(O ) (71) 
j = l  

where n' =n'~ +n'2+n'3. The angular functions, Xn(f2), have the convenient 
composition property: 

Z,(f2)Z.,(I2) = Z. + ,,(f2) (72) 

so that 

f f  4n __~I 1 df2z.(f2)Zn,(O)= df2Zn+..(f2)-(n+n,+l)!tj ( n j + n j - 1 ) t ! .  (73) 
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